If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-140=40
We move all terms to the left:
8x^2-140-(40)=0
We add all the numbers together, and all the variables
8x^2-180=0
a = 8; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·8·(-180)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*8}=\frac{0-24\sqrt{10}}{16} =-\frac{24\sqrt{10}}{16} =-\frac{3\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*8}=\frac{0+24\sqrt{10}}{16} =\frac{24\sqrt{10}}{16} =\frac{3\sqrt{10}}{2} $
| 2x+5-4x=13 | | 8x+7(3x-3)=15-7x | | k2–7k+6=0 | | 3*3-3x=3x-9 | | t(6t−7)=0 | | x^2(x+4)=45 | | 5x^2+7x+3.5=0 | | (2x-4)+(4x+10)=(9x-9) | | (4d+3)/4=5 | | 3x-160=360 | | y+y=56 | | -m/4=4 | | -4.5+4-2.5+0.4+6x=78.5 | | -123=7r-5(3+5r) | | X/y=3.5 | | 6.8=2x | | 3x(2-6x)(x-1)=0 | | -36=-8r–4r | | 5z+z=-12 | | 2=5+x/6 | | 2x+7(2x+1)=119 | | 2+d2=3 | | 2+d/2=3 | | 9x-(x+1)=-17 | | 6(3x+1)-14(2-4x)=3(5x-4)+7(7x) | | 12r-(5r-6)=-15 | | 4=q2 | | 29=t+20 | | 7x-(3x-5)=-19 | | -(3x+4)=-(5x+7) | | 40+x=67 | | (2x+10)+(3x-5)=80 |